75 research outputs found

    Small deviations of iterated processes in space of trajectories

    Full text link
    We derive logarithmic asymptotics of probabilities of small deviations for iterated processes in the space of trajectories. We find conditions under which these asymptotics coincide with those of processes generating iterated processes. When these conditions fail the asymptotics are quite different

    Large deviations for polling systems

    Get PDF
    Related INRIA Research report available at : http://hal.inria.fr/docs/00/07/27/62/PDF/RR-3892.pdfInternational audienceWe aim at presenting in short the technical report, which states a sample path large deviation principle for a resealed process n-1 Qnt, where Qt represents the joint number of clients at time t in a single server 1-limited polling system with Markovian routing. The main goal is to identify the rate function. A so-called empirical generator is introduced, which consists of Q t and of two empirical measures associated with S t the position of the server at time t. The analysis relies on a suitable change of measure and on a representation of fluid limits for polling systems. Finally, the rate function is solution of a meaningful convex program

    Information geometry and sufficient statistics

    Full text link
    Information geometry provides a geometric approach to families of statistical models. The key geometric structures are the Fisher quadratic form and the Amari-Chentsov tensor. In statistics, the notion of sufficient statistic expresses the criterion for passing from one model to another without loss of information. This leads to the question how the geometric structures behave under such sufficient statistics. While this is well studied in the finite sample size case, in the infinite case, we encounter technical problems concerning the appropriate topologies. Here, we introduce notions of parametrized measure models and tensor fields on them that exhibit the right behavior under statistical transformations. Within this framework, we can then handle the topological issues and show that the Fisher metric and the Amari-Chentsov tensor on statistical models in the class of symmetric 2-tensor fields and 3-tensor fields can be uniquely (up to a constant) characterized by their invariance under sufficient statistics, thereby achieving a full generalization of the original result of Chentsov to infinite sample sizes. More generally, we decompose Markov morphisms between statistical models in terms of statistics. In particular, a monotonicity result for the Fisher information naturally follows.Comment: 37 p, final version, minor corrections, improved presentatio

    Estimating QoS Parameters for ATM Traffic Using its Entropy

    No full text

    Discrete Time Renewal Processes

    No full text
    corecore